Рыба, которая бьет током. Чувствительность рыб к электромагнитным полям Как рыбы вырабатывают электричество

Разность потенциалов на концах электрических органов может достигать 1200 вольт, а мощность разряда в импульсе — от 1 до 6 киловатт. Частота импульсов зависит от их назначения. Например, электрический скат испускает 10—12 импульсов, когда защищается, и от 14 до 562, когда нападает. Мощность напряжения в разряде у разных рыб колеблется от 20 до 600 вольт. Среди морских рыб самый «сильный» электрический орган у ската Torpedo maromata — он может генерировать разряд более 200 вольт. Электричество защищает его и от акул, и от осьминогов, а также позволяет охотиться на мелких рыб.

У пресноводных рыб разряды еще мощнее. Дело в том, что соленая вода лучше проводит электричество, чем пресная. Поэтому морским рыбам, чтобы оглушить противника, требуется меньше энергии. Одна из самых опасных пресноводных рыб — это электрический угорь из Амазонки. На его теле три электрических органа. Два из них для навигации и поиска добычи, а третий представляет собой мощнейшее оружие с напряжением более 500 вольт. Электрический удар такой силы не только убивает рыбу и лягушек, но даже может нанести серьезный вред человеку. Поэтому ловить амазонских угрей очень опасно. Для этого в реку загоняют стадо коров, чтобы угри истратили на них весь свой заряд. Только после этого люди заходят в воду.

Некоторые рыбы используют электричество для навигации. Например, нильский слоник или рыба-нож создают вокруг себя электромагнитное поле. Когда в него попадает посторонний объект, рыба сразу это чувствует. Такая навигационная система напоминает эхолокацию летучих мышей. Она позволяет хорошо ориентироваться в мутной воде. Как показали исследования, многие электрические рыбы настолько чувствительны к изменению электромагнитных полей, что способны «предвидеть» приближающееся землетрясение.


Электромагнитная сенсорика рыб

Электромагнитные поля широко распространены в природе. Земля имеет собственное магнитное поле. Ионосфера Земли насыщена электрическими токами, постоянно подпитываемыми из Космоса. Электрические и магнитные явления связаны между собой. Магнитное поле Земли, величина и направление которого меняются во времени, способствует возникновению электрических полей (закон Фарадея). Единство этих двух физических явлений отразилось и на механизме восприятия рыбами электрических и магнитных полей. Электрорецепция. Функционирование всех органов рыб и особенно органов, состоящих из возбудимых тканей, сопровождается образованием электрических и магнитных полей. Для морской воды характерен электрический потенциал 0,1-0,5 мкВ/см, созданный течением. Водная среда, в которой обитают рыбы, обладает высокой электропроводностью. Поэтому вполне закономерно, что электромагнитные поля играют важную роль в жизни рыб. Электрический потенциал воды может выполнять роль своеобразных маяков при миграциях рыб. Электрическую реактивность (электрораздражимость) рыб принято делить на три уровня.

Первый (нижний) уровень (порог) ее характеризуется легким подергиванием всего тела или его части. Для большинства рыб нижний порог электрораздражимости оценивают в 10-100 мВ/см. Второй уровень (гальванотаксис) проявляется в направленной локомоторной реакции на действие электрического раздражителя.

Третий уровень - электрошок - это ответ рыбы на раздражитель сверхпороговой величины.

Существуют виды, у которых в процессе эволюции сформировались высокоспециализированные электрические органы, обеспечивающие электромагнитную рецепцию или генерирующие электрические импульсы различной величины. Их довольно много (около 300 морских и пресноводных видов). Различают 3 группы рыб.

В первую группу входят сильноэлектрические виды с хорошо развитыми специализированными электрическими органами (создают импульсы 100-400 В), во вторую - слабоэлектрические виды, имеющие биологические электрогенераторы (создают импульсы до 1 В).

У сильноэлектрических видов нижний порог электрочувствительности на 3-4 порядка выше, чем у слабоэлектрических. Например, для отпугивания акул достаточно создать градиент напряжения 10-100 мкВ/см.

Неэлектрические виды без специализированных электрических органов (большая часть ихтиофауны) создают поля с напряжение от нескольких микровольт до сотен милливольт.

Группу сильноэлектрических рыб представляют электрические скаты, электрические угри (пресноводные), электрический сом из водоемов Африки, Все они являются активными хищниками и генерируют мощные электрические разряды (до 600 В с силой тога до 1 А) для поражения своей жертвы на расстоянии нескольких метров или для собственной защиты от более крупных хищником Поражающий эффект этих хищников таков, что человек, попадающий в их электрическое поле, подвергается мышечному параличу и временно теряет сознание.

Группа слабоэлектрических видов более многочисленна. Это пресноводные рыбы отряда мормирид, которые практически непрерывно генерируют слабые ритмичные импульсы от 0,3 до 12 В. доказано, что эти рыбы используют электрические импульсы для внутри- и межвидового общения.

Неэлектрические виды наиболее заметные электрические импульсы генерируют в состоянии большого напряжения: при бросках на жертву (щука), агрессивно- оборонительных реакциях (форель, окунь), нересте (все рыбы). Доказано, что параметры импульсов этих видов рыб (амплитуда, частота, время электроимпульса) зависят от функционального состояния и температуры воды. Хищники и ночные рыбы по сравнению с мирными и дневными рыбами имеют более сильные электромагнитные поля. В табл. 2.6 приведены характеристики электрических разрядов неэлектрических (пресноводных) рыб.

2.6. Электрические разряды неэлектрических рыб

Вид рыбы

Поведенческая ситуация Напряженность электрического поля, мкВ/см Продолжительность разряда, мс

Диапазон частот, Гц

Испуг 15 50-85

Окунь речной

« 15 45
» 8-10 120-280
» 8 8
Удар 65* 50
Кормление 1500* 8
Удар 90* 135

*Величина разницы потенциала.

Биологическое значение электрических явлений у неэлектрических рыб выражается в ориентации и коммуникации отдельных особей, а также осуществлении межгрупповых коммуникаций внутри стаи или скоплении рыбы. Электрическая чувствительность этих рыб изменяется в процессе онтогенеза. Например, у горбуши и семги она составляет1х10-8 А/мм 2 (у молоди она в несколько раз меньше, чем у половозрелых особей). Кроме того, нижний порог чувствительности возрастает с повышением температуры среды. На этот показатель положение тела рыбы относительно линий тока, а также удельное сопротивление воды, свою очередь, рецепторная чувствительность к электромагнитным явлениям рыб обратно пропорциональна их электрогенерирующей способности. Так, сильноэлектрические рыбы, например акулы и скаты, реагируют на электрические поля напряженностью 0,01 мкВ/см. Поэтому этим рыбам доступны электрические поля, исходящие от затаившейся жертвы, в результате работы дыхательных мышц и сердца.

Слабоэлектрические виды, например минога и химера, чувствительны к электрическим полям напряженностью 0,1?0,2мкВ/см.

Органы, генерирующие и рецептирующие электрические импульсы, разделены. Например, электрические органы скатов имеют почкообразную форму и достигают 25 % массы тела рыбы. Они расположены по бокам тела на участке от головы до грудных плавников

У электрических угрей электрогенерирующие органы также очень крупные, тянущиеся по бокам тела.

Электрический орган электрического сома имеет вид длинного тяжа, расположенного практически вдоль всего тела между кожей и мышцами по обеим сторонам. У слабоэлектрических видов рыб мормирид электрические органы расположены на хвосте. У неэлектрических видов рыб электрические импульсы генерируются скелетной мускулатурой и сердцем.

Электрорецепторный аппарат представлен различными образованиями боковой линии (у скатов и акул, например, ампулам Лоренцини). Магниторецепция. Согласно результатам исследований рыбы, чувствительны и к чисто магнитным полям. Реакция на изменение магнитных полей подробно изучена у сильноэлектрических рыб особенно у акул и скатов. В литературе описана реактивность и неэлектрических видов рыб к магнитным полям. Источниками магнитных полей (рис. 2.27) в водоеме являются магнитное поле Земли, изменение активности Солнца, а также перемещения масс воды и движения самих рыб. Несмотря на то, что магнитное поле Земли хорошо изучено и измерено (см рис. 2.27), причина его формирования остается неясной. Современная измерительная техника позволяет утверждать, что источник регистрируемого на поверхности Земли магнитного поля рас положен внутри земного шара. Внешние источники лишь вызывают колебания напряженности магнитного поля Земли. Наиболее известна гипотеза геомагнитного поля, согласно которой его источником служит некое самовозбуждающееся гидромагнитное динамо, генерирующее электрический ток, который, в свою очередь, индуцирует магнитное поле. Данная модель, однако, не объясняет причины изменения магнитного поля во времени происхождение магнитных аномалий Земли.

Магнитные аномалии Земли и по сей день доставляют человечеству и животному миру большие неприятности. Так, в районе о. Маврикий, в Бермудском треугольнике, у финского о. Юссаро в районе Огненной Земли магнитный компас не работает, электронные навигационные приборы дают сбои. В условиях видимости здесь происходят кораблекрушения.

Рис. 2.27. Магнитное поле Земли

Магнитная аномалия, с одной стороны, может помешать мигрирующим животным в ориентации. С другой стороны, магнитная аномалия может быть использована в качестве маяка на маршруте движения. На Аляске магнитная аномалия Земли такова, что почтовые голуби в этом районе сбиваются с пути. А вот морские животные (китообразные, рыбы) используют это природное явление для навигации. На рис 2.28 показана магнитная аномалия в районе кию побережья Великобритании. В этом месте наблюдают странности в поведении мигрирующих животных. Например, здесь очень часто происходят выбросы китов на берег. В этом районе сбиваются с курса почтовые голуби. Кстати, небезызвестную собаку Баскервиллей автор поместил в район этой магнитной аномалии, в известное по девонскому периоду графство Девон. Магнитные аномалии отмечены и в других районах (Курская аномалия, Бразильская аномалия, Бермудский треугольник).

Попадая в область магнитных аномалий, перелетные птицы сбиваются с маршрута, т.е. становятся неспособными использовать магнитное поле для ориентации. Тот факт, что магнитное поле Земли существовало задолго до возникновения жизни на ней, свидетельствует о том, что процесс эволюции животного мира на протяжении всей своей истории находился под влиянием этого фактора внешней среды. В настоящее время влияние магнитного поля на физиологию животных не вызывает сомнений, так как магниторецепция обнаружена во многих систематических группах живых организмов, начиная с бактерий и кончая млекопитающими.

В последнее время изменения активности Солнца очень значительно отслеживаются

физиками. Для этих изменений характерна определенная цикличность, которая определяет цикличность изменений многих параметров среды обитания живых существ на нашей планете. Так, пищевая активность рыб часто связана со вспышками на Солнце, что хорошо известно рыбакам. Ионосфера Земли улавливает влияние солнечных и лунных приливных сил. Поэтому магнитное поле Земли проявляет малоамплитудные изменения с периодами, равными солнечным и лунным суткам, синодическому месяцу и тропическому году. Точность этих колебаний магнитосферы Земли чрезвычайно высока. Колебания магнитного поля могут служить синхронизатором биологических часов, давать возможность всем чувствительным организмам, включая рыб, отмечать ход времени.

С помощью условных рефлексов доказано, что не только пластинчатожаберные, но и костистые рыбы, например лососевые, угреобразные, реагируют на изменение магнитного поля и изменяют свою пространственную ориентацию в магнитных полях искусственного происхождения. В природе известно несколько типов вариаций магнитного поля.

Во-первых, это суточные изменения, обусловленные прохождением солнечных ветров через ионосферу и магнитосферу Земли.

Во-вторых, это короткопериодные геомагнитные флуктуации собственного магнитного поля Земли, имеющие суточную периодичность. В-третьих, это магнитные бури, возникающие эпизодически в результате взаимодействия магнитосферы Земли с потоками электронов и протонов, излучаемых Солнцем (вспышки на Солнце).

Все три типа магнитных возмущений приводят к образованию в земной коре и морской воде так называемых теллурических токов.

Градиент потенциала теллурических токов имеет суточные колебания в 0,01-0,1 мкВ/см. Во время магнитных бурь флуктуации теллурических токов многократно возрастают, достигая 0,1 - 100кВ/см. Градиент теллурических токов существенно выше вблизи берега и вдоль континентального шельфа. Это объясняет привязанность миграционных маршрутов многих птиц и рыб к береговой линии или шельфу.

Теллурические токи, являющиеся пороговыми раздражителями для рыб, используются мигрирующими рыбами для привязки к определенному маршруту. Доказано изменение электрической активности ампул Лоренцини акул при флуктуациях теллурических токов.

Для других таксономических групп организмов убедительно оказано, что геомагнитное поле Земли является фактором внешней среды, который используется ими для ориентации в пространстве. Это, прежде всего, относится к видам животных, совершающим длительные миграции (перелетные птицы, насекомые, млекопитающие, ведущие ночной или подземный образ жизни). Трудно удержаться от предположения, что и мигрирующие виды используют магнитное поле Земли для ориентации.

Магниторецепция сильно выражена не только у мигрирующих животных, но и обнаружена у видов, обитающих в условиях плохой освещенности, имеющих слабое зрение, - норных грызунов, пещерных жи-вотных, летучих мышей. Известно немало примеров миграций рыб, которые нельзя объяснить лишь использованием ими в пути зрительной и химической рецепции. Так, угорь европейский совершает сложный путь из Саргассова моря в Европу, не сбиться с которого, опираясь только на зрительную и химическую рецепцию невозможно. Биология угря во многом остается неясной. Так, хотя и считается, что европейский речной угорь нерестится в Саргассовом море, однако до сих пор в местах нереста не было выловлено ни одной половозрелой особи. Интересно, что личинки речного угря на разной стадии развития обнаруживаются в районах со строго определенным напряжением магнитного поля Земли (см. рис. 2.27). Концепция трехлетнего пассивного дрейфа личинок угря в течении Гольфстрим к берегам Европы выглядит малоубедительной.

Тихоокеанские лососи очень быстро и безошибочно совершают тысячекилометровые броски от побережья Северной Америки в Тихий океан и обратно. Полосатый тунец и меч-рыба совершают ежедневные перемещения из океана на прибрежные мелководья независимо от освещенности или мутности воды в океане.

Причем многие пелагические рыбы обладают уникальной генетически детерминированной способностью долго сохранять постоянный компасный курс, удержать который, используя небесные и наземные ориентиры, невозможно. Например, меч-рыба может выдерживать постоянный курс в открытом океане на протяжении нескольких суток. Такой же способностью к навигации в море обладает и атлантический лосось.

Рис. 2.29 Миграционные пути угря

До недавнего времени на морских судах для навигации использовали в основном компас и карту. Другого способа удержать правильный курс в открытом море при плохой видимости (отсутствие звездного неба, Луны, Солнца) у моряков не было. Следовательно, и у рыб должен быть механизм ориентации в открытом пространстве с ограниченной видимостью, аналогичный компасу и карте. Он может состоять из рецепторного аппарата, карты электромагнитного поля Земли и центрального аппарата сравнения.

Механизм магниторецепции. У рыб (тунцы, угри, лососи, скаты, акулы) обнаружены ткани и органы с магнитными свойствами. Табл. 2.7 на примере желтоперого тунца дает представление о магнитных свойствах некоторых тканей и органов рыб.

* М. М. Уокер, Д. Л. Киршвинк, Э. Э. Дайзон, 1989

** Приставка "п" - "пико" (1012).

Наиболее ярко выраженными магнитными свойствами у рыб отличается передняя часть головы. Более детальный анализ показал, что магнитный материал рыб концентрируется в области решетчато-обонятельной кости. Анализ ряда видов рыб из пяти семейств показал, что их решетчато-обонятельная кость отличается высокими магнитными характеристиками. Однако наибольший магнитный момент этой части черепа зафиксирован у видов рыб, совершающих длительные миграции (голубой марлин, тунцы, лососи, угорь).

Магнитный материал решетчато-обонятельной кости выделен и изучен. Это магнетит - кристаллы с магнитными свойствами, заполняющие решетку кости. Химический состав магнетита рыб идентичен составу магнетитных структур насекомых, пресмыкающихся и птиц, и представлен оксидами железа, марганца и кальция (табл. 2.8).

Форма кристаллов размером 45х38нм близка к кубической. Правильная форма, химическая и пространственная однородность у разных видов позвоночных животных, занимающих разное эволюционное положение, подчеркивают их эндогенное биогенное происхождение, т.е. синтез на органической матрице костей.

2.8. Химический состав магнетитных кристаллов тунца

Оксид Массовая доля, %

Магнетитные кристаллы находятся во взаимодействии друг с другом посредством собственных магнитных полей. При изменении внешнего магнитного поля отдельные кристаллы способны поворачиваться наподобие стрелки компаса, изменяя при этом свое собственное поле и суммарное поле решетчатой кости. Ферромагнитная гипотеза магниторецепции позволяет объяснить реактивность рыб на магнитные поля и использование рыбами магнитных полей для навигации. Однако до сих пор не описана анатомическая структура, в которой происходит трансформация магнитного поля в потенциал действия, т.е. в нервный импульс. Гипотетически магниторецептор рыбы может иметь следующую схему (рис. 2.30). Поворот кристалла магнетита раздражает чувствительное окончание дендрита нейрона. В результате образовавшийся потенциал действия возбуждает нейрон. В магнитной решетке решетчатой кости ориентация и величина магнитного напряжения отдельных кристаллов магнетита генетически детерминированы. Однако экологические условия, в которых растет молодь, могут внести поправку в структуру решетки и напряженность кристаллов.

Суммарное магнитное напряжение магнитной решетки рыбы может быть достаточно высоким. Поэтому изменение напряженности магнитного поля рыбы, например, при изменении солнечной активности может привести ее в состояние тревоги, дискомфорта. Отсюда, снижение кормовой активности рыб, что рыбаки оценивают как отсутствие клева.

Магнитная решетка может выполнять и функцию своеобразной навигационной карты. Перед миграцией магнитное напряжение отдельных кристаллов магнетита и суммарное магнитное поле всей решетки настраиваются относительно магнитных линий Земли на пути предстоящей миграции. Отклонение от генетически детерминированного маршрута приводит к напряжению магнитного поля рыбы,


Рис.2.30. Гипотетическая схема магниторецептора

что она оценивает как дискомфортное состояние. Выйти из него можно лишь одним способом - привести кристаллы решетки в исходное напряжение, а это, в свою очередь, возможно только через изменение положения тела относительно магнитных линий Земли, т.е. рыба вынуждена вернуться на заданный маршрут. Наличие магниторецепторов решетчатой кости объясняет реактивность к электромагнитным полям неэлектрических и слабоэлектрических видов рыб. У сильноэлектрических видов рыб рецепция магнитного поля осуществляется боковой линией рыб и производными от нее структурами. В магнитном поле тело рыбы является источником индукционных электрических полей, которые фиксируются структурами боковой линии. В опытах на скатах показано, что электрическая активность ампул Лоренцини изменяется как в электромагнитном поле, так и в поле постоянного магнита.

Интересно, что реакции рыб на изменение магнитного поля зависят еще и от движения воды. Так, у ската реакция на магнитное поле в искусственном водоеме возникала тогда, когда ампулярный канал рецептора (ампулы Лоренцини) находился под углом к направлению тока воды. Если канал располагался вдоль водного потока, электроактивность ампул Лоренцини на изменение магнитного поля не регистрировалась. Следовательно, морские течения при миграциях рыб могут выполнять функцию корректировки направления движения рыб. Некоторые специалисты высказывают мнение о том, что кроме описанных выше структур лабиринт является морфологической основой вероятной магниторецепции. Однако экспериментальных доказательств участия полукружных каналов в магниторецепции у рыб для этого недостаточно. Их связь с рецепцией магнитных полей у диких перелетных птиц и почтовых голубей убедительно доказана многочисленными экспериментами. Имеются указания и на то, что изменение напряженности магнитного поля приводит к изменению возбудимости узлов симпатической нервной системы без промежуточной магниторецепции. Известно, что магнитное поле влияет на движение любого электрического заряда или частицы. Следовательно, реакция на магнитное поле организмом осуществляется и без специфических рецепторов. Мембранный потенциал, круговые токи, электрические явления в сердечной мышце и в нейронах изменяются в магнитном поле. Электрочувствительные органы также могут информировать об изменении магнитного поля. Изменения самочувствия человека, поведения домашних животных при изменениях геомагнитной обстановки общеизвестны. Изменение электромагнитного поля Земли перед глобальными катастрофами - землетрясениями, извержениями вулканов, ураганами- сопровождается этологическими аномалиями животных разного уровня организации (от муравьев до приматов). Массовую гибель животных, как и появление новых видов на Земле, многие исследователи связывают именное внезапно возникшими электромагнитными аномалиями, которые лишают животных пространственной и временной ориентации.

Магнитная афферентация, как и всякая другая сенсорная информация, поступает в промежуточный мозг. Вероятно, к магнитосенсорике имеет отношение эпифиз. У почтовых голубей, морских свинок и крыс наблюдали повышение электрической активности эпифиза в искусственном магнитном поле. У крыс искусственное магнитное поле изменяло секреторную активность эпифиза. В ночное время 15-минутная магнитная экспозиция повышала активность фермента ацетилтрансферазы и образование гормона мелатонина в эпифизе. Таким образом, таламус получает информацию об изменении геомагнитного поля по двум традиционным каналам - нервному и гуморальному.

Принимая во внимание, что электроактивность эпифиза возрастает и при световой стимуляции, можно предположить, что эпифиз причастен к афферентному синтезу при позиционировании рыбы в процессе навигации. При этом магнитосенсорная афферентация может играть ключевую роль.

Таким образом, теллурические токи, магнитные поля и флуктуация электромагнитного поля Земли, морские течения, световые и химические раздражители, а также соответствующие им сенсорные органы создают объективные предпосылки для механизма точного географического позиционирования и навигации у мигрирующих рыб.



Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Происходят, например, во многих растениях. Но самым удивительным носителем этой способности являются электрические рыбы. Их дар вырабатывать разряды сильной мощности не доступен ни одному виду животных.

Зачем рыбам электричество

О том, что некоторые рыбы могут сильно «бить» затронувшего их человека или животное, знали еще древние жители морских побережий. Римляне считали, что в этот момент у обитателей глубин выделяется какой-то сильный яд, вследствие которого у жертвы наступает временный паралич. И только с развитием науки и техники стало понятно, что рыбам свойственно создавать электрические разряды разной силы.

Какая рыба - электрическая? Ученые утверждают, что эти способности свойственны почти всем представителям названного вида фауны, просто у большинства из них разряды небольшие, ощутимые только мощными чувствительными приборами. Используют они их для передачи сигналов друг другу - как средство общения. Сила излучаемых сигналов позволяет определить в рыбьей среде, кто есть кто, или, иными словами, выяснить силу своего противника.

Электрические рыбы используют свои особые органы для защиты от врагов, в качестве оружия поражения добычи, а также как локаторы-ориентиры.

Где у рыб электростанция?

Электрические явления в организме рыб заинтересовали ученых, занимающихся явлениями природной энергии. Первые эксперименты по изучению биологического электричества проводил Фарадей. Для своих опытов он использовал скатов как самых сильных производителей зарядов.

Одно, на чем сошлись все исследователи, что основная роль в электрогенезе принадлежит клеточным мембранам, которые способны раскладывать положительные и отрицательные ионы в клетках, в зависимости от возбуждения. Видоизмененные мышцы соединены между собой последовательно, это и есть так называемые электростанции, а соединительные ткани - проводники.

"Энергодобывающие" органы могут иметь самый различный вид и место размещения. Так, у скатов и угрей это почкообразные образования по бокам, у рыб-слонов - цилиндрические нити в районе хвоста.

Как уже было сказано, производить ток в том или ином масштабе свойственно многим представителям этого класса, но есть настоящие электрические рыбы, которые опасны не только для других животных, но и для человека.

Электрическая рыба-змея

Южноамериканский электрический угорь не имеет ничего общего с обычными угрями. Назван он так просто по внешнему сходству. Эта длинная, до 3 метров, змееобразная рыба весом до 40 кг способна генерировать разряд напряжением в 600 вольт! Тесное общение с такой рыбешкой может стоить жизни. Даже если сила тока не станет непосредственной причиной смерти, то к потере сознания приводит точно. А беспомощный человек может захлебнуться и утонуть.

Электрические угри живут в Амазонке, во многих неглубоких реках. Местное население, зная их способности, не заходит в воду. Электрическое поле, производимое рыбой-змеей, расходится в радиусе 3 метров. При этом угорь проявляет агрессию и может нападать без особой на то надобности. Наверное, он это делает с перепугу, так как основной рацион его составляет мелкая рыбешка. В этом плане живая «электроудочка» не знает никаких проблем: выпустил зарядик, и завтрак готов, обед и ужин заодно.

Семейство скатов

Электрические рыбы - скаты - объединяются в три семейства и насчитывают около сорока видов. Им свойственно не только вырабатывать электричество, но и аккумулировать его, чтобы использовать в дальнейшем по назначению.

Основная цель выстрелов - отпугивание врагов и добыча мелкой рыбешки для пропитания. Если скат выпустит за один раз весь свой накопленный заряд, его мощности хватит, чтобы убить или обездвижить крупное животное. Но такое происходит крайне редко, так как рыба - скат электрический - после полного «обесточивания» становится слабой и уязвимой, ей требуется время, чтобы снова накопить мощность. Так что свою систему энергоснабжения скаты строго контролируют с помощью одного из отделов мозга, который выполняет роль реле-выключателя.

Семейство гнюсовых, или электрических скатов, называют еще «торпедами». Самый крупный из них - обитатель Атлантического океана, черный торпедо (Torpedo nobiliana). Этот которые достигают в длину 180 см, вырабатывает самый сильный ток. И при близком контакте с ним человек может потерять сознание.

Скат Морсби и токийский торпедо (Torpedo tokionis) - самые глубоководные представители своего семейства. Их можно встретить на глубине 1 000 м. А самый маленький среди своих собратьев - индийский скат, его максимальная длина - всего 13 см. У берегов Новой Зеландии живет слепой скат - его глаза полностью спрятаны под слоем кожи.

Электрический сом

В мутных водоемах тропической и субтропической Африки живут электрические рыбы - сомы. Это довольно крупные особи, от 1 до 3 м в длину. Сомы не любят быстрых течений, живут в уютных гнездах на дне водоемов. Электрические органы, которые расположены по бокам рыбы, способны производить напряжение в 350 В.

Малоподвижный и апатичный сом не любит уплывать далеко от своего жилища, выползает из него для охоты по ночам, но также и непрошеных гостей не любит. Встречает он их легкими электрическими волнами, ими же и добывает себе добычу. Разряды помогают сому не только охотиться, но и ориентироваться в темной мутной воде. Мясо электрического сома считается деликатесом у местного африканского населения.

Нильский дракончик

Еще один африканский электрический представитель царства рыб - нильский гимнарх, или аба-аба. Его изображали на своих фресках фараоны. Обитает он не только в Ниле, но в водах Конго, Нигера и некоторых озер. Это красивая «стильная» рыбка с длинным изящным телом, длиной от сорока сантиметров до полутора метров. Нижние плавники отсутствуют, зато один верхний тянется вдоль всего тела. Под ним и находится «батарейка», которая производит электромагнитные волны силой 25 В практически постоянно. Голова гимнарха несет положительный заряд, а хвост - отрицательный.

Свои электрические способности гимнархи используют не только для поиска пищи и локации, но и в брачных играх. Кстати, самцы гимнархов просто потрясающе фанатичные отцы. Они не отходят от кладки икринок. И стоит только приблизится кому-то к детям, папа так окатит нарушителя электрошокером, что мало не покажется.

Гимнархи очень симпатичны - их вытянутая, похожая на дракончика, мордочка и хитрые глазки снискали любовь среди аквариумистов. Правда, симпатяга довольно агрессивен. Из нескольких мальков, поселенных в аквариум, в живых останется только один.

Морская корова

Большие выпуклые глаза, вечно приоткрытый рот, обрамленный бахромой, выдвинутая челюсть делают рыбу похожей на вечно недовольную сварливую старуху. Как называется электрическая рыба с таким портретом? семейства звездочетов. Сравнение с коровой навевают два рожка на голове.

Эта неприятная особь большую часть времени проводит, зарывшись в песок и подстерегая проплывающую мимо добычу. Враг не пройдет: корова вооружена, как говорится, до зубов. Первая линия нападения - длинный красный язычок-червячок, которым звездочет заманивает наивных рыбок и ловит их, даже не вылезая из укрытия. Но если надо, то она взметнется мгновенно и оглушит жертву до потери сознания. Второе оружие для собственной защиты - позади глаз и над плавниками расположены ядовитые шипы. И это еще не все! Третье мощное орудие расположено сзади головы - электрические органы, которые генерируют заряды напряжением в 50 В.

Кто еще электрический

Вышеописанные - это не единственные электрические рыбы. Названия не перечисленных нами звучат так: гнатонем Петерса, черная ножетелка, мормиры, диплобатисы. Как видите, их немало. Наука сделала большой шаг вперед в изучении этой странной способности некоторых рыб, но разгадать полностью механизм аккумуляции электроэнергии большой мощности полностью не удалось и до нынешнего времени.

Рыбы лечат?

Официальная медицина не подтвердила обладание электромагнитного поля рыб целебным эффектом. Но медицина народная издавна использует электрические волны скатов для излечения многих болезней ревматического характера. Для этого люди специально прогуливаются вблизи и получают слабые разряды. Вот такой себе натуральный электрофорез.

Электрических сомов жители Африки и Египта используют для лечения тяжелой стадии лихорадки. Для повышения иммунитета у детей и укрепления обшего состояния экваториальные жители заставляют тех прикасатся к сомам, а также поят водой, в которой некоторое время плавала эта рыба.